


# **CHA Series** – The Original Heat-Les™ Drying Technology

### **Annual Energy Savings**

| Average<br>Demand | scfm | Typical<br>Heatless Design<br>cost of 15% purge | CHA Series<br>w/AMLOC®<br>controls<br>cost of purge | Energy Savings<br>with CHA Series |  |
|-------------------|------|-------------------------------------------------|-----------------------------------------------------|-----------------------------------|--|
| 100%              | 3600 | \$70,578                                        | \$70,578                                            |                                   |  |
| 85                | 3060 | 70,578                                          | 59,991                                              | \$ 10,587                         |  |
| 70                | 2520 | 70,578                                          | 49,404                                              | 21,174                            |  |
| 50                | 1800 | 70,578                                          | 35,289                                              | 35,289                            |  |
| 35                | 1260 | 70,578                                          | 24,702                                              | 45,876                            |  |
| 20                | 720  | 70,578                                          | 14,116                                              | 56,462                            |  |

Assumes 5 scfm per HP, 8760 hours of operation per year, 10 cents per kW/h



CHA Series with AMLOC®

Typical Heatless Design (requires 15% purge air)

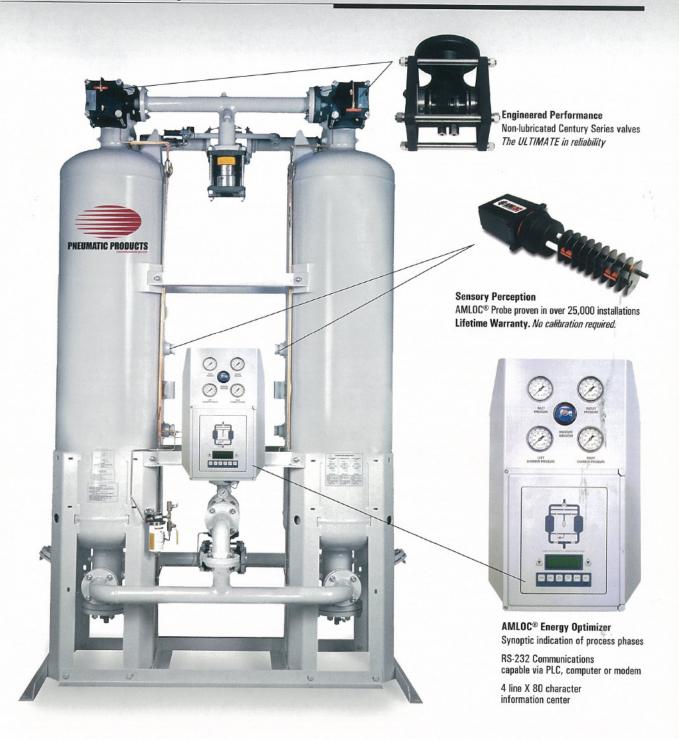


Since 1946, the world has turned to PNEUMATIC PRODUCTS for the quality and service demanded by the most critical of applications. Global leaders of industry require durable components that deliver unquestionable reliability. Our precision engineered components and designs, deliver outstanding service life and operational longevity. Invest in our experience and gain annuities that will grow for years.

### Simplicity and Versatility - Legendary Design

PNEUMATIC PRODUCTS Heat-Les™ technology is the model of simplicity and the origin of the most common design in use today. CHA Series dryers offer versatility of application as they excel in hostile environments where corrosive, toxic or explosive elements exist.

Everyone knows, heat rises. Our legendary down flow drying process takes advantage of that principle in storing the heat of adsorption. In regeneration mode, a side-stream of dried process air with an affinity for moisture, leverages the heat of adsorption to dry the off-line desiccant chamber. Exceptional dew point stability to -100°F (-73°C) is achieved.


### Patented Process Quality Valves - Engineered Simplicity

Standard off-the-shelf valves were not good enough for critical applications so we engineered our own. Tested under adverse conditions without failure in excess of 500,000 cycles, our full port, air-operated Century Series poppet valves feature stainless steel internals. Protected against wear, a friction-free PTFE coating is applied to all wear surfaces. Corrosion resistant and non-lubricated, these valves were engineered to withstand elevated temperatures, clogging, and erosion caused by abrasive desiccant dust. These are the best valves in the industry - period.

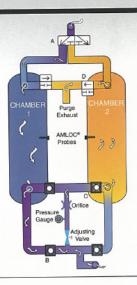
### Patented Automated Moisture Load Control (AMLOC®)

Today's air system auditors know that it is rare to find a dryer that operates under full-load conditions. That is why AMLOC® is standard equipment on every CHA Series dryer we build. AMLOC® energy management systems generate tens-of-thousands of dollars in energy saving annuities for industry leaders. Our PTFE coated stainless steel capacitance probes sense the dielectric strength imparted upon the desiccant by the extracted water vapor. Capable of identifying an aging or fouled bed, the heating and purge cycles are managed with precision. AMLOC® reduces cycle frequency to extend component life and ensures consistent dew points.

# **CHA Series – Key Product Features**








## **Functions, Features, and Specifications**

### **How it Works**

Moist, filtered compressed air enters down flow drying Chamber 1 via valve (A). Water vapor is adsorbed onto the desiccant and dry compressed air exits through valve (B), abrasive desiccant dust is captured by an afterfilter when supplied. In regeneration mode, a side-stream of dried process air (C) with an affinity for moisture, leverages the heat of adsorption to desorb off-line desiccant Chamber 2. Water vapor releases from the desiccant and evacuates through valve (D) our spring loaded flow restrictor controls the rate of depressurization to prevent bed fluidization. Once desorbed, valve (D) closes and Chamber 2 is repressurized. No further energy will be consumed until AMLOC® determines the on-line bed is fully utilized, whereupon, operations will switch and Chamber 1 will be regenerated.

AMLOC® governs this process with precision. Patented capacitance probes sense the dielectric strength water vapor imparts on the desiccant. Low moisture loads extend the drying cycle while eliminating energy use. Fewer flow reversals yields longer desiccant and valve life. Serious performance, reliability and energy savings result as energy consumption mirrors plant air usage.



### **Product Features AMLOC®** Information Center **Alarm Protection Parameters** ADC Control System w/ AMLOC® Intelligence Probe Desiccant Indicator Patented History Log Back-lit LCD 4 Categories: Display Reminders: Warning PTFF Coated. Premium Extended Drying RS-232 Port-Stores 20 Class 1, Aguadex® Management With Active Dryer Status, Depressurization AMLOC® Groups C & D, Diverse Lighting Service, History, Visual Clarity In Valves. Grade/ & Alarm Stainless Cycles - Long Communications Events -System Repressurization Failure, High Visual, Color Activated Desiccant. Component Life Capable Simplifies On-line Pressure, Illumination Conditions Configuration Capacitance Δlumina Filters Trouble LEDs Sensor S 0 = Option

### **Engineering Data**

S = Standard

|                      | Inlet F   | Inlet Flow <sup>1</sup><br>@ 100 psig, 100°F |     | System <sup>2</sup> |     |                |                    |                    | 17                           |
|----------------------|-----------|----------------------------------------------|-----|---------------------|-----|----------------|--------------------|--------------------|------------------------------|
| Model                | @ 100 psi |                                              |     | Dimensions          |     | Approx.        | Inlet/Outlet       | Mounted Filtration |                              |
|                      | -40°F     | -100°F                                       | н   | inches<br>W         | D   | Weight<br>lbs. | Connections inches | Prefilter          | Afterfilter                  |
| 2000CHA              | 2,000     | 1,200                                        | 139 | 81                  | 78  | 4,700          | 4" FLG             | PCC124004SU        | PCC124004AF                  |
| 2500CHA              | 2,970     | 1,470                                        | 140 | 91                  | 87  | 6,500          | 6" FLG             | PCC136003SU        | PCC136003AF                  |
| 3000CHA              | 2.970     | 1,770                                        | 142 | 92                  | 87  | 6,600          | 6" FLG             | PCC136003SU        | PCC136003AF                  |
| 3600CHA              | 4.270     | 2,505                                        | 148 | 107                 | 94  | 9,500          | 6" FLG             | PCC148004SU        | PCC148004AF                  |
| 4900CHA              | 5,810     | 3,480                                        | 159 | 128                 | 103 | 15.500         | 6" FLG             | PCC160005SU        | PCC160005AF                  |
| 6400CHA              | 7.600     | 4,560                                        | 165 | 145                 | 111 | 17,200         | 8" FLG             | PCC172006SU        | PCC172006AF                  |
|                      | 9,680     | 5,820                                        | 179 | 170                 | 127 | 24.000         | 8" FLG             | PCC196008SU        | PCC196008AF                  |
| 8100CHA              | 11.940    | 7.164                                        | CF  | CF                  | CF  | CF             | 10" FLG            | PCC11600015SU      | PCC11600015AF                |
| 10000CHA<br>12100CHA | 14,450    | 8.670                                        | CF  | CF                  | CF  | CF             | 10" FLG            | PCC11600015SU      | PCC11600015AF                |
| IZIUUCHA             | 14,400    | 0,070                                        | 01  | J.                  | -   |                |                    |                    | /27 GOCI ambient temperature |

1 Performance data per CAGI Standard ADF 200 for Dual-Tower Regenerative Desiccant Compressed Air Dryer. Rating conditions are 100°F (37.8°C) inlet 100 psig (6.9 bar) inlet pressure, 100% relative humidity, 100°F <sup>2</sup> Dimensions, Weights & Inlet/Outlet Connections based on F-O1 pre-piped filter options

Consult factory for sizing assistance. Larger models available. CF - Consult factory



ements and research are continuous at SPX Pneumatic Products Specifications may change without notice.

Bulletin PIS-131 e

SPX Dehydration & Process Filtration

4647 S.W. 40th Avenue

Ocala, Florida 34474-5788 U.S.A.

Phone: 352-873-5793 • Fax: 352-873-5770

Email: pneumatic.products.sales@dehydration.spx.com

www.pneumaticproducts-spx.com

© 2007 SPX Corporation. All rights reserved.